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Introduction

Definition. A sequence (xn) is uniformly distributed if for all continuous functions f :
[0, 1] → R, the averages

ANf =
1

N

N∑
n=1

f (xn) →
1∫

0

f (t) dt = I.

For example, if θ is an irrational real number, the sequence of fractional parts ({nθ} : n ≥ 1)
is uniformly distributed.

Uniform Distribution of Powers of Rationals

To explore the density of {θn} in [0, 1), we created a program to find the number of iter-
ations n for the fractional part of the powers of any real number θn to enter an epsilon
ball around a target between [0, 1). We graph the fractional part of the first 1000 powers of
various θ ∈ R. We also graph the powers of the irrational golden ratio, ϕ.

It is known that the sequence (θn) is uniformly distributed mod 1 for almost all θ (except for
a set of Lebesgue measure 0). We try to quantify the probability that a sequence will
be uniformly distributed by an analysis of the distributions of its fractional parts.

In particular, for n values of a uniformly distributed sequence and m equally spaced bins
of the unit interval, we expect that the proportion of elements in each bin is roughly 1

m. We
measure the deviation from this expectation as a probability. For the same sequences as
above, we find that:
with probability 0.9879,(1.05n) is uniformly distributed
with probability 0.9879, (1.2n) is uniformly distributed
with probability 0.9879, (1.5n) is uniformly distributed
with probability 0.5525, (ϕn) is uniformly distributed

Three Gaps Theorem

Definition. A simple continued fraction is an expression of the form

x = a0 +
1

a1 +
1

a2+
1

a3+...

with ai ∈ Z>0, which is abbreviated as x = [a0; a1, a2, ....]. The nth convergent of
[a0; a1, a2, · · · ] is the finite continued fraction [a0; a1, a2, ..., an], denoted pn

qn
.

Three gaps theorem given xn = nθ, the fractional parts
{xn}, n = 1, . . . , N will be at most three gaps between
[0, 1].

To estimate the ratio between smallest gap and
largest gap, we use continued fraction on x = [x0 :
x1, x2, ...]. The convergences pn/qn are obtained from
the continued fraction and use the tail ξm. It says
that as N increases from qm + 1 to qm+1, the ratio
sN/LN increases monotonically from ξm

1+ξm
to 1

1+ξm+1

We suppose the data are in an interval [0, 1]. You take a large L and divide into equal
intervals Jj = [j/L, (j + 1)/L with j = 0, . . . , L− 1. We count the number Dj of data points
dn in each Jj. We graph it with the base of the bar on the interval Jj and the height equal
to Dj.

There are some interesting examples. When we choose x = τ = (
√
5 − 1)/2, then we

get ξm = τ for all m. The fraction sequence will be [0, 1, 1, .....]. If we fixed N between
qm + 1 ≤ N ≤ qm+1, we have τ

1+τ ≤ sN/LN ≤ 1
1+τ . Now sN/LN is not constant, but it is

bounded above and below by constants. τ
1+τ and 1

1+τ . This distribution of the fractional
parts is close to a regular partition, which makes the rate of uniform distribution, and the
value of the discrepancy DN in cases like this optimal.

Farey Sequences, Diophantine Approximation, Rigidity Sequences

Farey sequences and Farey approximation
The Farey sequence is defined as Fn, written in increasing order, of all the rational num-
bers between 0 and 1 that have only the numbers 1, 2, 3, ..., n as denominators. We can
do the same thing for rational numbers between any two positive numbers. For example
we can consider sequences between 1 and 2 where we have F1 =

1
1,

2
1, F2 =

1
1,

3
2,

2
1

For the two positive rational numbers b
d and a

c the mediant is defined as a+b
c+d with the nice

property that if 0 < b
d < a

c , then b
d < a+b

c+d < a
c .

Farey sequences give an interesting way of approximating rational numbers.
To find a rational approximation to an irrational number using Farey fractions, one can
pick the interval between Farey fractions that contains the target number and narrow the
interval at each step. If the target number is between b

d,
a
c , then at the next step you have

to decide which of the two intervals below contains the target number: [bd,
a+b
c+d], [

a+b
c+d,

a
c ].

Diophantine approximation and rigidity
Diophantine approximation concerns how well we can approximate a given irrational num-
ber x by rational numbers. In fact, there is a constant C such that for any irrational x, there
are infinitely many integer pairs (p, q) such that |x− p

q | ≤
C
q2

.

Hurwitz’s theorem says C = 1√
5

is the smallest value of C. If the golden ratio and all the

numbers ”equivalent” to it are deleted, the smallest value of C can be 1√
8
.

Diophantine approximation of x gives us rigidity sequences (qn : n ≥ 1): sequences such
that the fractional parts {qnx} converge to 0 modulo one. That is, there are fractions fn
such that qnx = pn + fn, and fn goes to zero.

Farey Fractions and the Riemann Hypothesis

Uniform distribution in Farey sequence as n → ∞
The number of elements of Fn is Nn =

∑n
k=1φ(q) = 3n2

π2 + O(n log n). For each interval

I ⊆ (0, 1], the size of Fn(I) is Nn =
3|I|n2

π2 (1 + log n
n ) + Oϵ(n

−1+ϵ). As n → ∞, we have

Nn(I)
Nn

= |I|(1 + O(log nn )) + Oϵ(n
−1+ϵ) → 0. This shows that Farey fractions are uniformly

distributed as n → ∞. It is worth observing that The sum of a function at the points in the
Farey sequence is given by

∑L(n)
α∈Fn(I)

f (α) =
∑∞

k=1

∑k
j=1 f (

j
k)f (

n
k).

Estimates equivalent to the Riemann Hypothesis, a couple using the
Farey Sequence
There are many equivalent forms of the Riemann Hypothesis. For example, consider the
growth of the function M(x) :=

∑
j≤x µ(j), where µ(j) is a Möbius function. According to

Littlewood(1912), M(n) = Oϵ(n
1
2+ϵ)∀ϵ > 0 is equivalent to Riemann Hypothesis.

Two estimates equivalent to the Riemann Hypothesis, using the Farey sequence:∑Nn
j=1(αj − j

Nn
)2 = Oϵ(n

−1+ϵ),∀ϵ > 0 given by Franel in 1924 and
∑Nn

j=1 |αj − j
Nn

| =

Oϵ(n
1
2+ϵ),∀ϵ > 0 given by Landau given in 1924.

Numerical Integration

We have discovered that the convergence of averages in the definition of uniform dis-
tribution always includes oscillation: for any non-constant f , we have infinitely often
ANf < AN+1f and also infinitely often AN+1f < ANf . What about oscillation around

the mean: for infinitely many N , ANf < I, and also for infinitely many N , ANf > I? We
have found that this is not always the case, but it is typical.

Oscillation of error in 1D
distributing {nθ}, θ ∈ Q

The same oscillation behavior occurs in ergodic theory

for the time averages AT
Nf (x) = 1

N

N∑
n=1

f (Tnx) of an er-

godic transformation T . Discovering oscillation for aver-
aging in uniform distribution and in ergodic theory has
led us to expand our study of oscillation to other aver-
aging processes and to multi-variable cases of uniform
distribution averaging and for averaging in ergodic the-
ory.

The plots depict the error between an integral
∫ 1
0 f and

its approximation ANf using some finite terms of the series against the number of terms
(N) taken in both 1 and 2 dimensions. The oscillations about the zero-error mark can be
observed.

Oscillation of error in 2D of
({Mα}, {Nβ}) , α, β ∈ Q

Such uniform distributions with irrationals are consid-
ered low discrepancy Sobol sequences, a class of se-
quences whose terms are spaced out specifically to be
as equidistributed as possible to reduce the discrep-
ancy.

The usage of uniform distributions as Sobol sequences
is computationally inexpensive in the context of quan-
titative finance. Although it is copious in lower dimen-
sions (where Riemann integration is the easiest and
most accurate method of integrating), not only does it
have a smaller Big-O, but it also results in a smaller er-
ror when taking a slightly larger number of terms.
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